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An array of one-dimensional conductors coupled by transverse hopping and interaction is studied with the
help of a variational wave function. This wave function is devised to account for one-dimensional correlation
effects. We show that under broad conditions our system possesses the superconducting ground state even if no
attraction is present. The superconducting mechanism is of many-body nature and deviates substantially from
BCS. The phase diagram of the model is mapped. It consists of two ordered phases competing against each
other: density wave, spin or charge, and unconventional superconductivity. These phases are separated by the
first-order transition. The symmetry of the superconducting order parameter is a nonuniversal property, which
depends on the particulars of the Hamiltonian. Within the framework of our model the possible choices are the
triplet f-wave and the singlet dxy-wave. Organic quasi-one-dimensional superconductors have similar phase
diagram.
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I. INTRODUCTION

In this paper we study the phase diagram of a system of
one-dimensional �1D� conductors arranged in a square lattice
and coupled weakly in the transverse direction. It is well
known from the numerical studies1–12 that in a rather general
situation such quasi-one-dimensional �Q1D� electron liquid
with purely repulsive electron-electron interaction is either a
superconductor or an insulator with spin- or charge-density
order. At the same time, analytical calculations13 supple-
menting these numerical findings remain quite limited. It is
the purpose of this paper to demonstrate that some prominent
features of Q1D metal, established with the help of numeri-
cal tools, could be reproduced analytically as well. More
specifically, below we show that using certain variational
wave function, which adequately captures 1D many-body ef-
fects, one may obtain three principle results: �i� general
structure of the Q1D metal phase diagram, �ii� superconduc-
tivity stability criterion, and �iii� two possible symmetries of
the superconducting order parameter.

The major issue in the description of the Q1D metal is the
phenomenon of dimensional crossover. At high energy the
system can be viewed as a collection of the Tomonaga-
Luttinger �TL� liquids.14,15 However, the TL liquid cannot
support a physical electron as an elementary excitation.
Thus, at low energy, where transverse single-electron hop-
ping becomes important, it is necessary to abandon the TL
notions and use the Fermi-liquid approach instead. There-
fore, one is to stitch two different descriptions together to
obtain a complete picture.

A simple method for the crossover description is proposed
in Ref. 16. The latter method is based on a variational wave
function, whose generalized version we use in this paper.
With the help of this wave function we derive the phase
diagram of our Q1D system.

Such phase diagram is similar to the phase diagram of the
organic superconductors �i� when the nesting of the Fermi
surface is good, the ground state is either spin-density wave
�SDW� or charge-density wave �CDW�; �ii� under increased
pressure the nesting is spoiled, the density wave becomes

unstable, and it is replaced by the unconventional supercon-
ductivity; �iii� under even higher pressure the superconduct-
ing transition temperature vanishes, and the system shows no
sign of the spontaneous symmetry breaking. This similarity
suggests that the proposed mechanism may be relevant for
these materials.

Yet, we do not aim at a quantitative model of real-life
systems. Indeed, assumptions made about Hamiltonian’s pa-
rameters may be inapplicable for a real material. Rather, we
want to demonstrate in a controllable way that the supercon-
ductivity in Q1D metals is a quite generic phenomenon,
whose most salient features can be captured analytically.

This paper is organized as follows. In Sec. II we formu-
late our model. In Sec. III we perform its mean-field analy-
sis. The variational calculations, which correct the mean-
field findings qualitatively, are presented in Sec. IV. The
phase diagram is mapped in Sec. V. We discuss the derived
results in Sec. VI.

II. SYSTEM

A. Hamiltonian

We start our presentation by writing down the Hamil-
tonian for the array of coupled 1D conductors,

H = �
0

L

dxH , �1�

H = �
i

Hi
1D + �

i,j
�Hij

hop + Hij
��� , �2�

where the indices i , j run over 1D conductors. In this paper
we denote the Hamiltonian densities with the calligraphic
letters �e.g., H� and full Hamiltonians with the italic letters
�e.g., H�.

In the above formula the Hamiltonian density Hi
1D con-

tains the in-chain kinetic energy and interactions,

Hi
1D = Ti

1D��†,�� + Vi
1D��†,�� + Vbs,i

1D ��†,�� , �3�
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Ti
1D = − ivF�

p�

p:�p�i
† ���p�i�: , �4�

Vi
1D = g2�

���

�L�i�R��i + g4��L↑i�L↓i + �R↑i�R↓i� , �5�

Vbs,i
1D = gbs�2kFi�−2kFi, �6�

where the chirality index p is equal to +1 �p=−1� for right-
moving �left-moving� electrons. The subscript “bs” stands
for “backscattering.” The theory has an ultraviolet cutoff �
=� /a. The symbol :…: denotes the normal order of the fer-
mionic fields with respect to the noninteracting ground state.
The Hamiltonian density Hi

1D is spin-rotationally invariant.
Different densities used in the formulas above and

throughout the paper are defined by the following equations:

�p�i = : �p�i
† �p�i: , �7�

�i = �
p�

�p�i, �8�

�2kFi = �
�

�R�i
† �L�i, �9�

�−2kFi = �2kFi
† , �10�

S2kFi = �
���

������R�i
† �L��i, �11�

S−2kFi = S2kFi
† , �12�

where �� is the vector composed of the three Pauli matrices.
The coupling between the 1D conductors is described by

the transverse terms: the single-electron hopping

Hij
hop = − t�i − j��

p�

��p�i
† �p�j + H.c.� , �13�

and the density-density interaction

Hij
�� = g0

��i − j��i� j + g2kF

� �i − j���2kFi�−2kFj + H.c.� .

�14�

We accept that all interactions are repulsive, weak, and that
the in-chain interactions are stronger than the transverse in-
teractions,

2�vF � g2,4 � gbs � g0
� � g2kF

� 	 0, �15�

and the transverse hopping is small,

vF� � t . �16�

The constraints on the Hamiltonian coefficients will be fur-
ther discussed in Sec. IV.

B. Bosonized Hamiltonian

In Sec. IV we will need the bosonized version of Hamil-
tonian density H1D. The bosonic representation is based on

the bosonization prescription for the electron field,17

�p�
† �x� = �2�a�−1/2
p�ei�2��p��x�, �17�

�p� =
1

2
��c + pc + ��s + p�s� . �18�

In the above formulas 
p� is the Klein factor, �c,s are the TL
charge �c� and spin �s� boson fields, and c,s are the dual
fields. The chain indices i , j are omitted in the expressions
above. We will not show these indices explicitly in cases
where such omissions do not introduce problems.

The bosonized one-chain Hamiltonian is

H1D��,� = H0
1D��,� + Vbs

1D��,� , �19�

where H0
1D is quadratic in the boson fields

H0
1D��,� = T1D��,� + V1D��,�

=
vc

2
�Kc:���c�2:+ Kc

−1:��c�2:�

+
vs

2
�:���s�2:+ :��s�2:� , �20�

while Vbs
1D is not

Vbs
1D��,� =

gbs

2�2a2cos��8�s� −
gbs

2�
�:��c�2:+ :��s�2:� .

�21�

The symbol :…: denotes the normal ordering of TL boson
operators with respect to the noninteracting �Kc=1, vs=vc,
and gbs=0� bosonic ground state. The Tomonaga-Luttinger
liquid parameters are given by the following formulas:

Kc =�2�vF + g4 − 2g2

2�vF + g4 + 2g2
, �22�

vc =
1

2�
��2�vF + g4�2 − 4g2

2, �23�

vs = vF −
g4

2�
. �24�

It is worth noting that

Kc � 1, �25�

for repulsive interaction.
We will also need the expression

�R�
† �L� =

1

2�a
ei�2��c+�s�, �26�

which gives the operator �R�
† �L� in terms of the TL bosons.

III. MEAN-FIELD APPROACH

Once the model is formulated, it is not difficult to analyze
its mean-field phase diagram. Such analysis introduces seri-
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ous qualitative errors. Yet, in order to appreciate fully the
advantage of the many-body calculations proposed below,
the comparison with the mean-field results is very important.

From the outset we have to keep in mind that in our
system several different symmetries might be broken. Thus,
several order parameters should be taken into consideration:
SDW, CDW, and triplet and singlet superconductivities.

To perform the mean-field analysis we write the interac-
tion terms as products of these order parameters. After that
the order corresponding to the highest Tc is chosen.

A. CDW and SDW

We start with the in-chain interaction �the biggest poten-
tial energy in the system�

Vi
1D + Vbs,i

1D = − �g2

2
− gbs	�2kFi�−2kFi −

g2

2
S2kFi · S−2kFi + ¯ ,

�27�

where ¯ stand for g4 term, which cannot be written as a
product of two order parameters.

The transverse Hamiltonian may be expressed as a prod-
uct of CDW and SDW order parameters,

�
ij

Hij
�� = �

ij

g2kF

� ��2kFi�−2kFj + H.c.�

− g0
���2kFij�−2kFij + S2kFij · S−2kFij� + ¯ , �28�

where the order parameter �2kFij is equal to ���R�i
† �L�j, and

S2kFij is defined in a similar fashion. They are bond CDW
and bond SDW. These types of order cannot take advantage
of the in-chain interaction energy �the biggest interaction en-
ergy in the problem�. Thus, they cannot compete against �2kFi

and S2kFi. We will not study �2kFij and S2kFij anymore.
The noninteracting susceptibilities of SDW and CDW are

equal to each other. Equations �15� and �27� suggest that the
SDW coupling constant is bigger than the CDW coupling
constant

gSDW =
g2

2
	 gCDW =

g2

2
− gbs +

z�g2kF

�

2
, �29�

where z� is the number of the nearest neighbors of a given
chain. Thus, when the nesting is good, the mean-field analy-
sis suggests that the ground state is SDW.

B. Superconducting orders

Several sorts of the superconducting order parameter can
be defined. They can be classified according to their spin and

orbital symmetries. It is useful to define a 2�2 matrix �̂ij
with components

��̂ij���� = �L�i
† �R��j

† , �30�

and write �̂ij as a sum of three symmetric matrices i���y and
one antisymmetric matrix i�y,

�̂ij =
1
�2

�dij · �i���y� + �iji�
y� . �31�

The operator �ij �dij� is the singlet �triplet� order parameter
corresponding to a Cooper pair composed of two electrons,
one of which is on chain i and the other is on chain j.

Furthermore, �̂ij may be symmetrized with respect to the
chain indices as well,

�̂ij
s/a =

1

2
��̂ij � �̂ ji� . �32�

The superscript s �a� stands for “symmetric” �“antisymmet-
ric”�.

The operators �ij
s/a and dij

s/a are defined in the same fash-
ion. If i= j, the antisymmetric quantities are, obviously, zero.

As the following derivations show, all these variants of
superconductivity are unstable at the mean-field level. The
in-chain interaction energy can be expressed as

Vi
1D + Vbs,i

1D = �g2 − gbs�dii · dii
† + �g2 + gbs��ii�ii

† + ¯ .

�33�

For realistic interaction g2	gbs. Therefore, the one-chain or-
der parameters dii and �ii are unstable.

The interchain interaction can be written as a bilinear of
the superconducting order parameters dij

s/a, �ij
s/a �where i� j�,

�
ij

Hij
�� = �

ij

2�g0
� − g2kF

� ���ij
a ��ij

a �† + dij
s · �dij

s �†�

+ 2�g0
� + g2kF

� ���ij
s ��ij

s �† + dij
a · �dij

a �†� + ¯ .

�34�

For a realistic choice of the interaction constants,

g2kF

� � g0
�. �35�

Consequently, the two-chain order parameters are unstable as
well as their one-chain counterparts.

C. Mean-field phase diagram

As a result of the above considerations the following
mean-field phase diagram has emerged. If the nesting is
good, the stable phase is SDW. It is characterized by the
nonzero 
S2kFi�. The SDW state competes with the CDW
state �nonzero 
�2kFi��. SDW wins for it does not frustrate the
backscattering interactions while CDW does �see Eq. �27��.

In a system with poor-nesting SDW becomes unstable.18

The mean-field theory predicts that such systems have no
spontaneously broken symmetry.

This phase diagram will be corrected in a qualitative man-
ner when the cooperative effects are accounted for. We will
show that the many-body phenomena force the violation of
Eq. �35�, which makes the superconductivity stable in the
systems with poor nesting. The same phenomena may lead to
the violation of inequality �29� inducing transition into CDW
rather than SDW.
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IV. VARIATIONAL PROCEDURE

In this section we develop an approach overcoming the
deficiencies of the mean-field approximation. Such deficien-
cies come about because the mean-field approximation,
when applied to the microscopic Hamiltonian �see Sec. III�,
cannot account for high-energy 1D physics of the Q1D
metal.

To repair the approach, high-energy excitations have to be
“integrated out” adequately. In principle, it is possible to per-
form such procedure with the help of the renormalization-
group �RG� transformation. To this end, one can execute the
following sequence of steps: �i� the microscopic Hamil-
tonian, Eq. �1�, is bosonized to obtain the bosonic TL Hamil-
tonian perturbed by several relevant operators �Hij

hop and
Hij

���; �ii� as the cutoff is lowered, the running Hamiltonian
departs from the TL fixed point; the RG flow has to be
stopped when renormalized transverse hopping, the most rel-
evant operator, becomes on the order of the flowing cutoff;
�iii� at this point the Hamiltonian is to be refermionized to
obtain the effective Fermi Hamiltonian Heff with low aniso-
tropy. Because of low anisotropy, the latter Hamiltonian may
be studied with the help of the mean-field theory;14,15 �iv�
therefore, the phase diagram of the system may be mapped.

As it usually happens with RG, it is a rigorous but rather
formal method. Below we use the variational technique pro-
posed in Ref. 16, which is equivalent to the tree-level RG
near the TL fixed point. The benefit of this approach is that it
allows us to construct explicitly different types of excitations
present in the Q1D metal. This makes the presentation much
more intuitive. However, this method possesses a serious
drawback. Specifically, it is difficult to check its accuracy.
Fortunately, when the accuracy becomes an issue, one can
recast the whole method into the RG form and rely on the
strengths of RG. The relation between the variational con-
struction and RG is shown in Fig. 1 in the form of the com-
mutative diagram.

After this introduction let us present our variational ap-
proach. To keep our discussion short, transparent, and intui-
tive, for the time being we assume that both backscattering
and transverse interactions are zero: gbs=0 and g0,2kF

� =0. In
such a situation the Hamiltonian is equal to

H� = �
i

H0i
1D + �

ij

Hij
hop. �36�

The first part of H�, the one-chain Hamiltonian H0i
1D, is qua-

dratic in terms of the TL bosons. The second part of H�, the

transverse hopping Hhop, is quadratic in terms of the physical
fermion fields. Because of this circumstance, the variational
derivations for H� are simpler than for generic H. Yet, such
derivations retain the most important features of the general
case. This makes H� an ideal object of initial investigation,
which we extend later for the Hamiltonian with nonzero gbs
and g0,2kF

� .
Below the prime mark � �� is used to distinguish between

the most general Hamiltonian H, Eq. �1�, and the special case
H�, Eq. �36�. Likewise, the prime decorates the objects asso-
ciated with H� �e.g., effective Hamiltonian Heff� and varia-
tional energy EV��.

We first explain the heuristic idea behind our variational
wave function. Let us think of our system in terms of the TL
bosons. The bosonized version of H0

1D is given by Eq. �20�.
However, the ground state �01D� of H0

1D is not a good ap-
proximation to the ground state of H� for the finite-order
perturbation theory in t is not well defined �e.g., see chapter
8 and chapter 20 in Ref. 17�.

On the other hand, if we were to describe our system with
the help of the bare electron degrees of freedom �, �†, we
account easily for Hhop. But within the fermionic framework,
the in-chain interaction energy is extremely difficult to
handle.

To resolve this conflict we introduce the parameter

�̃�� and separate the total phase space of the model into
two parts, the low-energy part �the degrees of freedom whose

energy is smaller than vF�̃� and the high-energy part �the

degrees of freedom whose energy is higher than vF�̃�.16 The
high-energy part is to be described in terms of the TL bosons,
while the low-energy part is to be described with the help of
fermionic quasiparticles, which we define below. The exact

value of �̃ is found variationally as a tradeoff between the
in-chain interaction and the transverse hopping.

The formal implementation of this approach goes as fol-
lows. First, the TL boson fields are split into two compo-

nents: fast �with large momentum k :�	 �k�	�̃� and slow

�with small momentum k : �k���̃�. The fast �slow� compo-
nent is marked by 	�� � superscript,

�c,s�x� = �c,s
� �x� + �c,s

	 �x� = �
�k���̃

�c,s,k
exp�ikx�

+ �
�̃��k���

�c,s,k
exp�ikx� , �37�

c,s�x� = c,s
� �x� + c,s

	 �x� = �
�k���̃

c,s,k
exp�ikx�

+ �
�̃��k���

c,s,k
exp�ikx� . �38�

This split of the bosonic degrees of freedom induces the split
of the in-chain Hamiltonian density H0

1D,

H0
1D��,� = H0

1D���,�� + H0
1D��	,	� . �39�

That is, the Hamiltonian H0
1D, Eq. �20�, cleanly separates into

two parts corresponding to fast and slow modes.
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FIG. 1. The relation between the variation procedure and the
tree-level RG.

A. V. ROZHKOV PHYSICAL REVIEW B 79, 224520 �2009�

224520-4



The quasiparticles �p�
† �x� are defined with the help of Eq.

�17�, in which a is substituted by ã=� / �̃ and the slow fields
�c,s

� , c,s
� , or �p�

� are placed instead of the bare fields �c,s,
c,s, or �p�,

�p�
† �x� = �2�ã�−1/2
p�ei�2��p�

� �x�. �40�

Using the quasiparticle field �p� we refermionize
H0

1D��� ,��,

H0
1D = H0

1D��†,�� + H0
1D��	,	� , �41�

H0
1D��†,�� = T1D��†,�� + V1D��†,�� , �42�

where T1D��† ,�� and V1D��† ,�� are given by Eqs. �4� and
�5�.

The mixed representation of H0
1D, Eq. �41�, makes no

sense in pure 1D problems, since H0
1D��† ,�� corresponds to

an interacting 1D system, whose ground state and excitations
have no simple representation in terms of �’s. Indeed, our

variational calculations show that if t=0, then �̃=0. That is,
no room for the quasiparticles is left in the 1D situation.
However, if t�0, the quasiparticles delocalize in the trans-
verse directions and lower the total energy of the system. In

such a case �̃ does not have to be zero, as we demonstrate
later.

The Hamiltonian density Hhop can be easily expressed
within the framework of the mixed quasiparticle-fast boson
representation. One observes that the physical fermion is
simply

�p�
† = �ã/a�p�

† ei�2��p�
	

, �43�

and that the fermionic and bosonic parts in this definition
commute with each other. Therefore,

Hij
hop = −

ã

a
t�

p�

�p�i
† �p�je

i�2���p�i
	 −�p�j

	 � + H.c. �44�

Equations �41� and �44� determine the form of the total
Hamiltonian H� in the mixed representation. Let us study
this Hamiltonian.

The eigenenergies of the fast bosons are determined
mostly by H0

1D��	 ,	�. These eigenenergies are bigger

than �vF�̃. The small hopping term is only a correction to
this quantity. Thus, we simply neglect the contribution of
Hhop to the high-energy sector properties and assume that all
fast bosons are in the ground state �0	� of the quadratic
Hamiltonian

H	 = �
i
� H0i

1D��	,	�dx . �45�

When describing the quasiparticle state, we cannot neglect
Hhop: the quasiparticles are low-lying excitations, and their
energy may be arbitrary small. Thus, we construct our varia-
tional wave function as a product,

�var� = ������0	� , �46�

where ����� is the unknown quasiparticle state. The varia-
tional energy is given by

EV� = 
var�H��var� = 
����Heff������ . �47�

This equation defines the effective quasiparticle Hamiltonian
Heff� as a “partial average” over the fast degrees of freedom,

Heff� = 
0	�H��0	� = H0
1D��†,�� + H̃hop��†,��

+ 
0	�H	�0	� , �48�

where the last term is the c-number corresponding to the fast
boson contribution to the variational energy, and the effective
quasiparticle hopping in Eq. �48� is defined by the formula

H̃ij
hop = − t̃�

p�

�p�i
† �p�j + H.c., �49�

t̃ = t
�

�̃

ei�2��p�

	

�	
2 . �50�

The symbol 
¯ �	 is the short-hand notation for 
0	�¯ �0	�.
The fast bosons introduce renormalization of the effective
hopping of the quasiparticles. The expectation value in Eq.
�50� is


ei�2��p�
	

�	 = � �̃

�
	�Kc+Kc

−1+2�/8

. �51�

To establish the above equality we must remember that �0	�
is the ground state of the quadratic Hamiltonian H	. Thus


ei�2��p�
	

�	 = e−�
��p�
	 �2�	, �52�


��p�
	 �2�	 =

1

4
�
��c

	�2�	 + 
�c
	�2�	 + 
��s

	�2�	 + 
�s
	�2�	�

=
1

8�
�Kc

−1 + Kc + 2�ln
�

�̃
. �53�

Substituting Eq. �51� into Eq. �50� one finds

t̃ = t� �̃

�
	�Kc+Kc�

−1−2�/4

. �54�

Assume now that the quasiparticle state ����� is a noninter-
acting fermion ground state. Then the variational energy may
be expressed as follows:

EV�/LN� = �1D + �F, �55�

where L is the length of the sample along the 1D conductors,
N� is the number of these conductors; the one-dimensional
contribution �1D and the noninteracting fermion contribution
�F are equal to

�1D =
vc�

2�
��̃2 − �2� , �56�

�F = −
4

�vF
�

i

�t̃�i��2 = −
4

�vF
� �̃

�
	2�

�
i

�t�i��2, �57�
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� =
1

4
�Kc + Kc

−1 − 2� . �58�

Two comments are in order. First, Eq. �56� assumes that the
Hamiltonian H1D, Eq. �3�, can describe even high-energy ex-
citations with �k���. This supposition may be too restric-
tive for at high energy a variety of irrelevant operators �dis-
persion curvature, for example� should be accounted for. A

more general form of Eq. �56� is �1D=vc��̃2 /2�+const,
where the constant depends on the irrelevant operators,
which are disregarded in the Eq. �3�. Fortunately, the precise
value of this constant is of no importance; all we need to
know for the variational calculations is the derivative

d�1D /d�̃. This quantity depends on the low-energy physics
only. Because of this it is unaffected by the irrelevant pertur-
bations. Second, our expression for the fermion energy �F

neglects all corrections coming from the quasiparticle inter-
action and possible symmetry breaking, since these are
small.

It is convenient to define the characteristic transverse hop-
ping energy as

t̄2 = �
i

�t�i��2, �59�

and the dimensionless ratio

� =
�̃

�
� 1. �60�

In terms of such quantities the variational energy is equal to

EV�/LN� =
vc�

2�
�2��2 − 1� −

4

�vF
�2�t̄2. �61�

Minimizing it with respect to � one finds that for small in-
chain interactions ���1�,

� = � 8t̄2

vcvF�2	1/�2−2��

. �62�

We see that if t=0, the variational value of �̃ is zero. In other
words, in pure 1D system the quasiparticles do not appear.

Another important result obtained from Eq. �62� is

t̃ � vF�̃ . �63�

This means that the anisotropy coefficient of the effective

Hamiltonian is of the order of unity, �t̃ /vF�̃��1. Therefore,
the mean-field treatment is appropriate for Heff�.14,15 The lat-
ter conclusion is crucial for it signifies the completion of our
quest: the microscopic Hamiltonian H�, Eq. �36�, whose
treatment is complicated by the presence of the 1D many-
body effects, is replaced by the effective Hamiltonian Heff�,
Eq. �48�, which can be studied with the help of the mundane
mean-field approximation.

Finally, we must extend the derivation of the effective
Hamiltonian to the situation of nonzero backscattering and
transverse interactions. As with the case of H�, the effective
Hamiltonian Heff for the generic Hamiltonian H is defined by
the equation Heff= 
H�	. It is straightforward to show that

Heff has the same form as H but with certain renormaliza-
tions of the coupling constants,

g̃2 = g2, g̃4 = g4, �64�

g̃bs = gbs, g̃0
� = g0

�, �65�

t̃ = ��t, g̃2kF

� = �Kc−1g2kF

� . �66�

The derivations of these expressions are similar to the deri-
vation of Eq. �54�. For example, to calculate g̃2kF

� we must
write


g2kF

� �2kFi�−2kFj�	 = g2kF

� ��

�̃
	2

�
���

�R�i
† �L�i�L��j

†
�R��j

�
ei�2���ci
	−cj

	�+��si
	−��sj

	���	

= g̃2kF

� �
���

�R�i
† �L�i�L��j

†
�R��j , �67�

where the effective coupling constant g̃2kF

� is given by the
expression

g̃2kF

� = g2kF

� ��

�̃
	2


ei�2���ci
	−cj

	�+��si
	−��sj

	���	. �68�

From this formula Eq. �66� for g̃2kF

� follows.
We want our effective Hamiltonian to be in the weak-

coupling regime; when the coupling is weak, the kinetic en-
ergy of the quasiparticles dominates over their interaction,
which justifies Eq. �57�. Consequently, we need to impose a
restriction on the magnitude of the effective coupling con-
stants. Thus, in addition to Eq. �15� we require

g̃2kF

� � 2�ṽF. �69�

Since g̃2kF

� =g2kF

� �Kc−1, inequality �69� is equivalent to

t̄

vF�
�

ta

vF�
= �g2kF

�

vF
	�1−��/�1−Kc�

. �70�

This gives the lower bound on the transverse hopping. In
Sec. VI A we will explain how this inequality should be
modified in order to improve the accuracy of our method.

Keeping the above considerations in mind, one writes the
equation for the effective Hamiltonian

Heff = H1D + H̃hop + H̃��, �71�

where the tildes above H̃hop and H̃�� signify that the coupling
constants of these terms are renormalized according to Eqs.
�64�–�66�. The variational energies EV and � are given by
Eqs. �55� and �62�. The relation Eq. �63� holds true for
Hamiltonian Heff implying the applicability of the mean-field
approximation. This completes our derivation of the effective
quasiparticle Hamiltonian and we are prepared to analyze the
phase diagram of our system.

V. PHASE DIAGRAM

How can the phase diagram of the Hamiltonian H, Eq.
�1�, be determined? It is essential to realize that the phase
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diagram of H coincides with the phase diagram of Heff. Con-
sider, for example, the anomalous expectation value

�L↑i

† �R↑j
† �. For such a quantity the following is correct:


�L↑i
† �R↑j

† � = ��

�̃
	
�L↑i

† �R↑j
† �
ei�2��p�

	

�	
2 . �72�

Since the bosonic expectation value is nonzero, both

�L↑i

† �R↑j
† � and 
�L↑i

† �R↑j
† � are either simultaneously zero or

simultaneously nonzero. The same is true for the other types
of broken symmetries. This proves that the phase diagram of
H and the phase diagram of Heff are identical. Since the
properties of Heff are accessible through the mean-field ap-
proximation, we are fully equipped to explore the model
phase diagram.

A. Density waves

First, we consider the density wave phases. Both SDW
and CDW have the same susceptibilities but different effec-
tive coupling constants,

g̃SDW =
g2

2
, �73�

g̃CDW =
g2

2
− gbs +

z�g̃2kF

�

2
. �74�

Due to the strong renormalization of g̃2kF

� , inequality Eq.
�29�, which is always satisfied for bare coupling constants, is
not necessary fulfilled, when the effective constants are com-
pared. Therefore, depending on the microscopic details, the
density wave phase could be of either nature. To be specific,
we study SDW below. The discussion for CDW is com-
pletely the same.

SDW in Q1D metal is thoroughly analyzed at the mean-
field level in Ref. 18. We follow this reference. As we know,
the stability of SDW depends crucially on the nesting of the
Fermi surface. The shape of the Fermi surface is determined
by the effective transverse hopping amplitudes t̃�i�. If one
assume that the only nonzero hopping amplitude is the
nearest-neighbor amplitude t̃1, then the resultant Fermi sur-
face nests perfectly. In order to describe the Fermi surface
with nonideal nesting, it is necessary to include at least the
next-to-nearest-neighbor hopping amplitude t̃2. For such
structure of hopping the SDW susceptibility is equal to

�SDW �
1

�vF
� ln�2vF�̃/T� , if T 	 t̃2 = ��t2

ln�2vF�̃/t̃2� , if T � t̃2 = ��t2.
� �75�

The SDW transition temperature is derived by equating
�g2 /2��SDW and unity. For t̃2=0 it is

TSDW
�0� � vF�̃ exp�− 2�vF/g2� . �76�

If t̃2	0 the transition temperature TSDW becomes smaller
then TSDW

�0� . It vanishes when t̃2�TSDW
�0� . That is, exponentially

small t̃2 is enough to destroy SDW.

B. Superconductivity

The destruction of the density wave does not automati-
cally imply that the ground state becomes superconducting.
By analogy with Eq. �34� we can write for the effective
Hamiltonian

�
ij

H̃ij
�� = �

ij

2�g̃0
� − g̃2kF

� ���̃ij
a ��̃ij

a �† + d̃ij
s · �d̃ij

s �†�

+ 2�g̃0
� + g̃2kF

� ���̃ij
s ��̃ij

s �† + d̃ij
a · �d̃ij

a �†� + ¯ ,

�77�

where order parameters �̃ij
s/a and dij

s/a are defined by Eqs.
�30�–�32�, in which bare fermionic fields � and �† are re-
placed by the quasiparticle fields � and �†.

From Eq. �77� we see that the effective superconducting

coupling constant g̃sc for �̃a and d̃s order parameters is equal
to

g̃sc = 2�g̃2kF

� − g̃0
�� . �78�

This allows us to formulate the following criterion: super-
conductivity is stable �or metastable� if

g̃2kF

� 	 g̃0
� = g0

�. �79�

At the same time one has to remember that for the bare
coupling constants the inequality g2kF

� �g0
� holds true �see

Eq. �35��. Can both inequalities be satisfied at the same time?
It is possible provided that the system is sufficiently aniso-
tropic. Indeed, inequalities �79� and �35� are equivalent to

8t̄2

vcvF�2 � �g2kF

�

g0
� 	�2−2��/�1−Kc�

� 1. �80�

This is the necessary condition for the superconducting
ground state. A similar condition is derived in Ref. 16 for the
spinless electrons. This inequality gives an upper bound on t.
This bound is discussed in Sec. VI A in connection with the
method dependability.

In the parameter region, where condition �80� is satisfied,
we can use the mean-field expression for the critical tem-
perature,

Tc � ṽF�̃ exp�− 2�ṽF/�g̃2kF

� − g̃0
��� , �81�

The dependence of Tc on the transverse hopping is plotted in
panel �a� of Fig. 2. At low transverse hopping Tc decreases,
since there is no ordered phase possible in one dimension.
The low-t part of this curve is unobservable, for when t is
small, the superconductivity is only metastable, while SDW
is the true ground state. At higher transverse hopping the
critical temperature decreases since g̃2kF

becomes smaller; at
sufficiently high t the condition Eq. �79� is violated, and Tc
vanishes. Similar nonmonotonous curves for the supercon-
ducting critical temperature are reported in Refs. 7 and 8.

The final question is the type of the superconducting order
realized in our system. As one can see from Eq. �77� there
are two candidates: singlet order parameter �ij

a �dxy-wave
according to the accepted naming scheme1� and triplet dij

s

�f-wave�. Both have the same coupling constant of g̃sc. To lift
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the degeneracy we must include subtler effects into our con-
sideration. We argue below �Sec. VI B� that the answer is
sensitive to microscopic details of the system. Therefore, in
real materials either type of the superconductivity can be, in
principle, realized.

C. Global phase diagram

In this subsection we construct the global phase diagram
of the system on the pressure-temperature plane. The effect
of the pressure on our Hamiltonian is twofold. First, it in-
creases the next-to-nearest-neighbor hopping amplitude t2.
Thus, the growth of the pressure spoils the nesting of the
Fermi surface.

Second, it makes the system less anisotropic. This, in turn,
leads to the reduction in the 1D renormalization of g̃2kF

� under
increasing pressure. Therefore, one can say that g̃2kF

� is de-
creasing functions of pressure.

Consequently, at low pressure the nesting is good and the
ground state is the density wave phase with the highest tran-
sition temperature possible. For the case of SDW such tem-
perature is given by Eq. �76�. Similar formula can be derived
for CDW. Under growing pressure the nesting property of
the Fermi surface deteriorates, and the density wave transi-
tion temperature becomes smaller.

The density wave transition temperature decays until
some critical pressure pc, at which it quickly goes to zero. At
p	 pc the subleading order, the superconductivity, is stabi-
lized. The characteristic superconducting critical temperature
is smaller than TSDW

�0� for the density wave coupling constant
is higher than that of the superconductivity. This is so be-
cause the density wave order benefits from the in-chain in-
teraction g2�L�R, while the superconductivity cannot do this.

The superconducting order parameter is either triplet
�f-wave� or singlet �dxy-wave�. The superconducting gap
vanishes at four nodal lines on the Fermi surface. Under even
higher pressure Tc→0 for the system becomes less aniso-
tropic and inequality �79� becomes invalid. The diagram is
shown in Fig. 3.

VI. DISCUSSION

This section is divided into five subsections. In subsection
A we discuss the accuracy of our method. In subsection B we
speculate under what condition the dx2−y2-wave superconduc-
tivity may be stabilized. In subsection C we compare our
approach with other theoretical methods available in the lit-
erature. In subsection D our theoretical results are compared
against published experimental data. In subsection E we give
our conclusions.

A. Accuracy of the variational approach

In general, variational approach is an uncontrollable ap-
proximation, and one may doubt our conclusions. Fortu-
nately, the presented variational scheme is only a front for
the tree-level RG transformation �see Fig. 1�. Using RG no-
tions, it is possible to prove rigorously that the superconduc-
tivity is stable at least in a certain parameter range. Since the
stability of the superconducting phase depends on effective
interchain interactions, we must show that the tree-level RG
is enough to capture them adequately.

As a starting point, we must establish the structure of the
tree-level RG flow. As implied by Eq. �15�, our model is near
the Tomonaga-Luttinger fixed point, which is defined by con-
ditions gbs=g0,2kF

� =0, t=0. The fixed-point Hamiltonian is
perturbed by two relevant operators, t and g2kF

� , and two mar-
ginal, gbs, g0

�. We assume that the transverse hopping is the

FIG. 2. The superconducting critical temperature Tc �panel �a��
and the effective coupling constant g̃2kF

� �panel �b�� as functions of
the transverse coupling amplitude t. The values of the bare coupling
constants are as follows: g4=0, g2 /2�vF=0.7, g2kF

� /2�vF=0.2, and
g0

� /2�vF=0.4. The value of Kc is 0.42 and the value of � is 0.2.
Three horizontal dashed lines on panel �b� are defined by equations
g̃2kF

� /2�vF=Ci, where C’s are C1=1 for line 1; C2=g2 /2�vF for
line 2; C3= �g2 /2�vF�2 for line 3. Our theory is quantitatively valid
if tb� t� tc �see Eq. �89� and discussion in Sec. VI A�. The theory
is completely inapplicable at t� ta �see Eqs. �69� and �70��.

density wave

SC
p p

T

c

dim. crossover

FIG. 3. Qualitative phase diagram of our model. Solid lines
show the second-order phase transitions into density wave and the
superconducting phases. Dashed line represents the first-order tran-
sition between these phases. The dotted line at high temperature
shows the location of the dimensional crossover.
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most relevant operator; at the dimensional crossover �t̃
�vF�̃� inequality �69� is satisfied.

The tree-level RG equations neglect the terms quadratic in
perturbations. Of the above four operators one can construct
ten bilinear combinations �gbs

2 , gbsg0
�, gbsg2kF

� , gbst, t2, tg0
�,

tg2kF

� , �g0
��2, g0

�g2kF

� , �g2kF

� �2�. Each of these ten bilinears
might be associated with the one-loop correction to the RG
equations.

In actuality, not all of these bilinears are of importance to
us. For example, �g0

��2 and gbsg0
� contributions are zero.

Some others �gbs
2 , gbst, tg0

�, and tg2kF

� � do not contribute to the
superconducting coupling constant whose accuracy we dis-
cuss.

Ultimately, we identify four terms, which modify the
value of g̃sc. First, the backscattering contributes to the
anomalous dimension of g2kF

� : the term proportional to
gbsg2kF

� enters the RG equation for g2kF

� . This correction may
be neglected, since the anomalous dimension is proportional
to g2, which is much larger than gbs �see Eq. �15��. Second,
the same reasoning as above demonstrates that g0

�g2kF

� may
be omitted as long as Eq. �15� is valid. Third, the transverse
hopping t2 contributes to interchain interactions. When in-
vestigating the contribution of this type, one has to remem-
ber that if g2,4=0, there is no one-loop correction propor-
tional to t2. This means that t2 enters the RG equations
multiplied by a power of g2,4. Indeed, the analysis of Ref. 13
shows that the flow equations for the superconducting cou-
pling constants contain the term proportional to
�g2,4 /vF�2�t /vF��2. It corrects interchain couplings by the
amount

��g�1 � �
0

��

d�
�g2,4t����2

vF
3�2���

�
�g2,4�2

vF
, �82�

t��� = te−��, �83�

where � denotes the scaling variable ����=�e−�. The di-
mensional crossover occurs, and our RG stops when �

reaches the value ��=ln�� / �̃�. At the crossover it is true,

t���� / �vF����������= t̃ / �ṽF�̃��1.
Fourth, the interchain interactions may contribute addi-

tional terms of order �g2kF

� �2 to the flow equations. Such term
corrects g0

� by the amount

��g�2 � �
0

��

d�
�g2kF

� ����2

vF
�

�g̃2kF

� �2

g2
, �84�

g2kF

� ��� = g2kF

� e�1−Kc��, 1 − Kc � g2/vF. �85�

Thus, the corrections to g̃sc beyond the tree-level may be
disregarded if g̃2kF

� is much bigger than ��g�1,2. This condi-
tion is equivalent to

�g2,4�2/vF � g̃2kF

� � g2. �86�

We already derived inequalities binding g̃2kF

� �see Eqs. �69�
and �79��. Since vF is bigger than g2, Eq. �69� gives a less
restrictive upper bound on g̃2kF

� than Eq. �86�. Therefore, if

we want an assurance that our method does not lead us
astray, we must abolish Eq. �69� and use Eq. �86� instead.

The situation with Eq. �79� is somewhat more compli-
cated. Within hierarchy �15� it is impossible to know, which
quantity, g0

� or �g2,4�2 /vF, is smaller. Thus, we define

gmax = max��g2,4�2/vF,g0
�� , �87�

and rewrite Eqs. �86� and �79� in the form

gmax � g̃2kF

� � g2. �88�

This inequality is self-consistent in the sense that gmax�g2
�see Eq. �15��. It is convenient to cast Eqs. �16� and �88� as a
constraint on the bare hopping amplitude,

tb � t � tc � vF� , �89�

where

tb = vF��g2kF

�

g2
	1−�/1−Kc

, tc = vF�� g2kF

�

gmax
	1−�/1−Kc

.

�90�

The quantities tb,c are marked in panel �b� of Fig. 2.
If inequality �89� is satisfied, then the model phase dia-

gram has a superconducting phase, and the superconductivity
is not an artifact of the variational method. It is likely that
some deviations from the constraints imposed by Eqs. �15�
and �89� are not deadly for superconductivity. Yet, they may
affect the order parameter symmetry. This issue is discussed
in the next subsection.

B. Symmetry of the superconducting order parameter

We have seen that the symmetry of the order parameter
cannot be unambiguously determined within the framework
of our approximation; as Eq. �77� suggests, both f-wave and
dxy-wave states have similar energies. Our method captures
only gross features of the model; it is not delicate enough to
calculate the superconducting coupling constant with higher
accuracy. We can identify at least two mechanisms, which
could lift the order parameter degeneracy. They work in op-
posite direction. Thus, the final outcome depends crucially
on the minutiae of the microscopic model.

The mechanism promoting f-wave increases the coupling
constant for this order parameter and decreases the dxy-wave
coupling constant. It operates in the following manner. The
RG flow applied to our system generates a new spin-
dependent transverse interaction,

H̃ij
SS = J̃2kF

� �i − j��S̃2kFi · S̃−2kFj + H.c.� . �91�

At the dimensional crossover �t̃� ṽF�̃� one has J̃2kF
�g2,4

2 /vF �see Eq. �82��. This estimate is derived also in Ref.
13 �see first row, second column of Table I where t��
�E0�l��. The new term can be cast as
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�
ij

H̃ij
SS = �

ij

− 2J̃2kF

� �d̃ij
s · �d̃ij

s �† − 3�̃ij
a ��̃ij

a �†�

+ 2J̃2kF

� �d̃ij
a · �d̃ij

a �† − 3�̃ij
s ��̃ij

s �†� . �92�

Thus, the f-wave coupling constant grows by 2J̃2kF

� , and the

dxy-wave coupling constant decreases by 6J̃2kF

� .
A factor in favor of the dxy-wave superconductivity is the

susceptibility. One can calculate two susceptibilities, � f
sc and

�d
sc, for two order parameters,

� f ,d
sc =

1

4�ṽF

ln� ṽF�̃

T
	 + Cf ,d, �93�

where Cf ,d are the nonuniversal constants. In other words,
the divergent parts of both susceptibilities are identical, but
the nonsingular parts depend on the order parameter symme-
try and the band structure. The disparity Cf �Cd happens
because our two orders have a different orbital structure �the
f-wave is symmetric with respect to the inversion of the
transverse coordinate, while the dxy-wave is antisymmetric�.

Within the framework of our model �linear dispersion
along the x axis, square lattice, and small t̃2�, we have Cf
�Cd. Thus, the susceptibility of the d-wave is higher. The
above analysis demonstrates that the symmetry of the order
parameter is a nonuniversal property very sensitive to the
microscopic details.

It is reasonable to ask if one can stabilize either of the
remaining superconducting orders, da or �s, by modification
of the model Hamiltonian. We can speculate that this might
be possible provided that the spin-spin interaction is en-
hanced. Indeed, by examining Eqs. �77� and �92� one con-
cludes that �s �dx2−y2-wave� could be nonzero if

3J̃2kF

� 	 g̃2kF

� . �94�

Such situation may be realized in a system with sufficiently
large gbs �to suppress CDW fluctuations� and sufficiently
small bare values of g2kF

� .
As for da, it is always zero; the constants in front of da are

strictly positive in both Eqs. �77� and �92�. Thus, we demon-
strate that the Q1D metal allows for a broad class of super-
conducting orders. The choice between these orders depends
on both the band structure and the interaction constants.

C. Other theoretical approaches

The root of the superconductivity in the real-life Q1D
materials remains an unresolved issue. It is often suggested
that the superconductivity in these compounds is not of pho-
non but rather of electron origin. There have been many
attempts to construct a mechanism in line with this sugges-
tion.

The theoretical literature on the subject is largely numeri-
cal. It can be split into three groups according to the tools
used. The studies employing the random phase approxima-
tion �RPA� or the fluctuation exchange approximation
�FLEX� �Refs. 2–5� constitute the first group. The second
group is made of the papers where RG �Refs. 1, 6, and 9–11

is utilized. The Monte Carlo simulation12 constitutes the last
group.

We have mentioned that our method is closely related to
the RG transformation. Clearly, it will be interesting to com-
pare our conclusions with the conclusions of other research-
ers who use similar strategies.

In Refs. 1, 6, and 9–11 the zero-temperature phase dia-
gram of the Q1D metal is mapped with the help of a numeri-
cal implementation of the one-loop RG flow. The authors of
the latter papers find that if the bare transverse interactions
are zero or extremely small, the system undergoes a transi-
tion from the SDW phase to the superconducting phase with
the order parameter �ij

s �dx2−y2-wave�. Furthermore, it is de-
termined that if the bare constants g2kF

� are sufficiently big,
the transition is from the CDW phase into the superconduct-
ing phase with the f-wave order parameter dij

s .
The results of these papers can be understood within the

framework of our approach. In the limit, where the only non-
zero interchain term is the transverse hopping �t�0 �Ref.
6��, the RG flow generates both g̃2kF

� and J̃2kF

� . These con-
stants satisfy the relation Eq. �94�. The mechanism behind
this is described in Secs. VI A and VI B.

As we pointed out, when Eq. �94� is valid, the most stable
order parameter is �ij

s �dx2−y2-wave�. Thus, our conclusions
agree with the findings of Ref. 6.

The limit studied in Refs. 9 and 10 is not compatible with
our Eq. �15�. In the latter reference it is assumed that the
in-chain backscattering is of the order of the in-chain for-
ward scattering. Thus, we cannot apply our approach
straightforwardly but certain qualitative conclusions may be
reached.

When bare g2kF

� is large, the effective coupling J̃2kF

� is
small and the effective coupling g̃2kF

� is large. The ground
state of the system with good nesting is CDW. The destruc-
tion of the CDW phase takes place when the nesting be-
comes sufficiently poor. Once the CDW is gone, we find
ourselves in a familiar situation where the stable supercon-
ducting order parameter is either ds �f-wave� or �a

�dxy-wave�, consistent with the f-wave found in Refs. 9 and
10.

If we lower g2kF

� sufficiently, the stability of SDW state
may be restored.9,10 The in-chain backscattering suppresses

g̃2kF

� and promotes J̃2kF

� ultimately leading to inequality �94�.
In such a regime the most stable order parameter is �ij

s

�dx2−y2-wave�, which agrees with Refs. 9 and 10.
The above argumentation lends additional support to the

notion that the mechanism proposed in this paper is not an
artifact of the variational approximation. It is also a conve-
nient feature of our method that it is analytical and the results
of other approaches can be understood within its framework.

Besides RG several authors use RPA or FLEX to deter-
mine the superconducting properties in the anisotropic Fermi
systems.2–5 These approximations resemble the classical
BCS scheme in which the phonons are replaced by bosonlike
excitations of some other kind. In the quoted papers the ex-
citations mediating the attractive interaction between the
electrons are spin-density and charge-density fluctuations.

The frameworks laid out by the RPA and FLEX schemes
are very appealing and intuitive. They both predict that under
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a certain condition the Q1D metal is an unconventional su-
perconductor. There is, however, a weak point: both methods
are unable to account for the peculiarities specific for the 1D
electron liquid. Such weakness artificially narrows the region
of the parameter space where the superconductivity is stable.

In a recent Monte Carlo simulation,12 it is demonstrated
that the superconducting ground state of a Q1D metal could
be either dx2−y2-wave or dxy-wave. At this moment this is the
only numerical method, which shows that the dxy-wave can
be a stable ground state of the Q1D metal. In Monte Carlo
simulation the dxy-wave wins over the dx2−y2-wave when the
nonzero interchain interaction is introduced. From the view-
point of our calculations this behavior is not surprising: if
g2kF

� is small, the system effective parameters may satisfy Eq.
�94�, and dx2−y2-wave is the ground state; when g2kF

� in-
creases, Eq. �94� is violated and the ground state is either
f-wave or dxy-wave, depending on the microscopic details. It
is yet to be understood, however, how to recover the f-wave
within the Monte Carlo method and how to recover the
dxy-wave within RG and RPA approaches.

Finally, the author recently developed a canonical trans-
formation approach for 1D electron systems.19,20 This
method may be viewed as a generalization of the one dis-
cussed in this paper. The application of the canonical trans-
formation method to the Q1D systems is in progress.

D. Experiment versus theory

The question remains if the model and the mechanism
discussed above are of relevance to the Q1D superconductors
such as compounds TMTSF and TMTTF.1 Of course, the
latter compounds have a very complicated crystallographic
structure: orthorhombic lattice, possibility of anion ordering,
dimerization.21 Yet, one can hope that these difficulties are
not of paramount importance as far as the superconducting
mechanism is concerned.

If this hope is justified should be assessed by the mecha-
nism’s ability to reproduce the main features of the experi-
mental data, at least qualitatively. We can look at the pre-
sented model with a good degree of optimism for it captures
the two most salient properties of the superconductivity in
TMTSF/TMTTF.

The first of these two features is the common boundary
shared by the superconducting and the SDW phases on the
pressure-temperature phase diagram; the diagram of Fig. 3 is
similar to the high-pressure part of the “universal” phase
diagram of the TMTSF/TMTTF compounds.22 The second is
the nontrivial orbital structure of the order parameter in the
Q1D superconductors. There are numerous pieces of evi-
dence in favor of the order parameter with zeros on the
Fermi surface.23–27 �However, there is a thermal transport
measurement28 which contradicts to this picture.� The order
parameters dij

s and �ij
s,a are of this kind. Therefore, the pre-

dictions of our model are in qualitative agreement with the
experiment.

E. Conclusions

We proposed the superconducting mechanism for the
strongly anisotropic electron model without attractive inter-
action. We have shown that there is a region in the parameter
space where the superconductivity is stable and shares a
common boundary with SDW. The model supports two types
of unconventional superconducting order parameter. Our
mechanism may be relevant for the organic superconductors.
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